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Variational Approach to Conical Bodies -- - 
1 _- H a v x  Maximum Lift-to-Drag Ratio at Hypersonic Speeds 

HO-YI H U A N G ~  

Abstract. An investigation of the lift-to-drag ratio E attainable by a slender, 

conical body flying at hypersonic speeds is presented under the assumptions that the 

pressure distribution is modified Newtonian and the surface- averaged friction 

coefficient is constant. The length of the body and the elongation ratio of the cross  

section (w. are prescribed, and the values of the free-stream dynamic pressure, the 

factor modifying the Newtonian pressure distribution m ,  and the surface- averaged 

friction coefficient C are known a priori. The indirect methods of the calculus of f 

variations are employed, and it is found that, for any given value of the length and the 

elongation ratio, the optimum transversal contour is a diamond shape. A s  the 

elongation ratio increases, the maximum lift- to- drag ratio increases, tending the 

3 
limiting value E = 0.529 ,/(m/C ) when a -, m .  

f 

-- 
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1. Introduction -- 
In Refs. 1 and 2, the lift-to-drag ratio obtainable by a slender, flat-top, homothetic 

body at hypersonic speeds was studied under the assumptions that the pressure dis- 

tribution is modified Newtonian and the surface-averaged friction coefficient is constant. I 

I 

In Ref. 1, --- direct methods were employed, and the analysis was confined to  the class of i 
bodies whose longitudinal contour is a power-law and whose transversal contour is 

i semielliptical or triangular. In Ref. 2, the indirect methods of the calculus of variations 
I 

were used and the longitudinal and transversal contours were optimized successively. I 

Concerning the longitudinal contour, it was shown that the optimum solution is conical I 

and the thickness ratio is such that the friction drag is one-third of the total drag. l 

Concerning the  transversal contour, it was shown that the optimum solution is triangular 

with o r  without a keel, depending on whether the cross-sectional elongation ratio is 

smaller or larger than the critical value u = 4.85. 

In Ref. 3, a modification of the problem studied in Refs.  1 and 2 was investigated, 

that of homothetic configurations which are not necessarily flat-topped. The optimum 

longitudinal contour was shown to be identical with that of the previous case. Concerning 

the transversal contour, direct methods were employed, and a systematic analysis of 

a wide variety of cross sections was presented. It was found that, for a given cross- 

sectional elongation ratio, a flat-top, triangular cross  section with or  without a keel 

is aerodynamically inferior to a flat- bottom triangle which, in  turn, is less efficient 

than a diamond shape. The latter was found to  be best among all the c ross  sections 

considered. 
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Since Ref. 3 treated only particular configurations, i t  is the purpose of this 

report to extend the study to arbitrary configurations. Therefore, the extrema1 problem 

is investigated via the - indirect methods of the calculus of variations. The following 

hypotheses a re  employed: (a) the body is conical; (b) a plane of symmetry exists between 

the left- hand and right- hand sides of the body; (c) the base plane is perpendicular to 

the plane of symmetry; (d) the free-stream velocity is contained in the plane of symmetry 

and is perpendicular to  the base plane; (e) the body is slender, in the sense that the 

cosine squared of the angle between the local normal to the body and the undisturbed 

flow direction is much smaller than one; (f) the pressure distribution is modified 

Newtonian, that is, the pressure coefficient is proportional to the cosine squared of 

the angle between the local normal to the body and the undistrubed flow direction; 

(g) the surface-averaged friction coefficient is constant; (h) the base drag coefficient 

is zero; and (i) the contribution of the tangential forces to the lift is negligible with 

respect to the contribution of the normal forces. 
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2 - Fundamental Equations 

W e  consider the Cartesian coordinate system OXYZ shown in Fig. 1 .  The origin 

0 is the apex of the body, the X-ax i s  is parallel to the free-stream velocity and positive 

toward the base, the Z-axis  is contained in the plane of symmetry and positive down- 

ward, and the Y-axis  is such that the XYZ-system is right-handed. 

44 -9 -+ 
We denote by i ,  j ,  k the unit vectors of this coordinate system, by n the 

unit vector normal to the  infinitesimal element of wetted area dS 

and by t the unit vector which is tangent to dS 

flow after impact. Since the free-stream velocity is parallel to the X-axis, the lift 

L and the drag D per unit free-stream dynamic pressure Lare given by 

positive outward, 
W' 

4 

and is in the direction of the local 
W 

I 
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L / x =  Iss (Cpz k' - Cf; G) dSw 
W 

-+ .+ 
D / % = J J ~  (-c n' i + c  f t . i)dSw 

P W 

where C is the pressure coefficient and C is the surface-averaged friction coefficient. 

If every surface element sees the flow, the distribution of the pressure coefficient 

P f 

is given by 

4 - 2  
C = 2m(n.  i )  

P 

where m is the factor modlfying the Newtonian pressure law. Therefore, after the 

geometric relationship 

dS W = 1;. k' I - ldXdY 



5 AAR- 3 5 

is introduced, the  aerodynamic forces can be rewritten in the form 

(4) 
-4 4 - 1  + * 3  4 -3 

n k I [-2m(n. 1) + C t - i1dXdY 
m f 

I + I I  

The symbols I and I1 refer to the upper and lower surfaces of the body, respectively. 

After the normal and tangent unit vectors a r e  expressed by 

+ + +  
t = a i + b j  + c k ,  a 2 0  

( 5 )  

Eqs. (4) become 

L/qm= Jj Iy 1-1(2rnm2y - Cfc)dXdY 
I+II 

I€ the geometry oL the body is described by the  equation 

f(X, Y, Z) = 0 (7) 

the normal unit vector and the gradient of the function f are parallel with the implication 

that 

where 

2 2 2 
g = ,\/(f, + f y  + f Z  ) 
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4 

Since the tangent vector has unit modulus, is perpendicular to  n, and is coplanar with 

n and i ,  the equations determining the components a, b, c are written as 
4 -3 

- 3 4  + - 3  4 - 3 4  

t * t = l ,  t . n = O ,  t * n x i = O  

and, in explicit form, become 

2 2 2  a + b  + c  = 1  

aa + Bb + yc = 0 

y b  - BC = 0 

These equations are solved by 

2 2 2 
a = d(1 - a ) , b = -u6/,/(1 - a ) , C = - aY/d(1 - a ) 

with the implication that 

a = h / g ,  b = - f  X Y  f / g h ,  c = -  fXf,/& 

where 

2 2 
h = ,J(fy + f Z  ) 

If relationships (8) and (13) are used, the expressions (6) become 
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If the geometry of the body is expressed in the form 

f(X, Y, Z) T z It Z(X, Y) = 0 

where the upper sign applies to the upper surface I and the lower sign to the lower 

surface 11, the following relationships hold: 

f ==Fl 
Y ’  z f = + z  x ’  Y f = & Z  X 

and imply that 

Consequently, Eqs. (15) can be rewritten as 

r r  3 

L/qm= JJ Z (T2mZX/$ - Cf/h)dXdY X I+II 

AAR-35 

and s i m p l e  t o  

D/q,= IJ (r2mZX/g 3 2  + Cfh)dXdY 
I+II 

if the contribution of the tangential forces to the lift is negligible with respect to the 

contribution of the normal forces. 

If the body is slender in the sense of hypothesis (e), that is, 
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g = h  

so that Eqs . (20) a r e  reduced to 

2 2 
X 

> - 2  

L / q z  jj [F2mZ /(l+Zy)]dXdY 
I+II 

2.1. - Conical Body. The geometry of a conical body can be expressed by the 

parametric equations 

where L is the length and where Yb, Z denote the coordinates of the base contour 

X = 6. On tfie base, Z b  = Zb(Yb). For the body (24), the surface integrals (23) 

reduce to the line integrals 

b 

where Z b  = dZ.  /dYb. 
D 

AAR-35 

(21) 
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2 .2 .  Dimensionless Quantities. We now define the dimensionless base 

coordinates 

y = Y b / t k ,  z = Z /Gk b 

where the constant k is given by 

Next, we define the modified lift L* and drag D, as follows: 

2 3  2 4  
L, = L/qmm& k , D, = D / x m t  k 

With this understanding, Eqs . (25) can be rewritten as 

L, = J r [F(z - yi$/(l + i 2 ) l d y  
I +I1 

D, = r [F(z - +?/(1 + i 2 )  + (1/2)\/(1 + i2)]dy 
"I+II 

AAR-35 

where = dz /dy .  

2.3. Remark. The Newtonian pressure law (2) is valid providing every surface 

element sees the flow. Therefore, the local contribution t o  the pressure drag must be 

nonnegative. This is equivalent to stating that the inequalities 

- 

'f (z - y?) 20 

must be satisfied at every point of the base contour. 
I 
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2.4.  Lift-to-Drag Ratio. The lift-to-drag ratio is defined as -- 

AAR-35 

E = L/D (31) I 

For the purposes of this paper, it is convenient to introduce the modified lift-to-drag 

ratio 

I 

E, = Ek 

and observe that, because of Eqs. (28), 

(32) I 

1 

(33) I 
i 



t 
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3 .  Optimum Transversal Contour Problem -_ 

Consider a conical body having the dimensionless base contour z = z(y). Since the 

contour is symmetric with respect to the z-axis, we limit the analysis to the semiplane 

y 2 0. Let y be the abscissa of the maximum width point, the point separating the 

upper and lower contours, and let the base contour be described by the relations (Fig. 2) 

f 

(34) 
Lower contour 

With this understanding, Ineqs. (30) become 

y b - u r o ,  y w - w s o  

and are equivalent t o  

2 2 
p + u - y i l = o ,  q - w + y w = o  

where 6 = du/dy, w = dw/dy and where p, q a r e  real functions of y .  Because of the 

definitions (34) and (36) and because the body has a plane of symmetry, the modified 

lift and drag (29) can be rewritten in  the form 

L, = SYfC-2p4/(l + G2) + 2 2 / ( 1  +G2)] dy 
Y; 

(35) 

It is now assumed that the length 8, the factor modifying the Newtonian pressure 

law m, and the surface-averaged friction coefficient C are known a p r io r ipo  that 

the constant k, defined by Eq. (27),is also known a priori. With this understanding, 

f 
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the problem of maximizing the lift-to-drag ratio (31) is equivalent to maximizing the 

modified lift-to-drag ratio (33) subject to  the definitions (37) and the differential 

constraints (36 ) .  Since the initial point is located in the plane of symmetry and the 

final point is the point of intersection of the upper and lower contours, the following 

boundary conditions must be considered: 

I 

I 

u - w  = o  f f  y i = o ,  

AAR-35 

It can be shown that the extrema1 solution of the problem formulated above is 

a cross  section of infinite width. Since this solution is unrealistic from an engineering 

point of view, some geometric constraint is needed. Therefore, as in Refs. 1 through 

3,  we require the cross- sectional elongation ratio 

I 

I 

t o  be a prescribed quantity. 
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4. - Necessary Conditions 

In accordance with the treatment of Refs. 4 and 5, the necessary conditions for 

the problem stated in the previous section are identical with those characterizing the 
I 
I functional 

AAR-35 

where F and G denote the functions 

, (41) 
I 

2 6 2 G = zS4/(1+ VG ) - x[2q /(I + ~ ~ ) + , / ( i  + G ~ ) I  - v(q - w +y+) 

Here, u and v are variable Lagrange multipliers and X is a constant Lagrange multiplier 

I whose value is 

h =  E, (42 1 

From calculus of variations (see, for example, Chapter 2 of Ref. 6), it is known 

that the extrema1 a r c  must be a solution of the Euler equations I 

I 
I 

The first two equations are relevant to the upper cantour, while the last two equations 

are relevant to  the lower contour. The functions solving Eqs . (43) must satisfy the 

t rans  versality condition - - 
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f 
[(F + G - GFG - GGG)6Y + F. 6~ + G . SW 3, = 0 (44) 

U W 

for every set  of variations consistent with the boundary conditions (38) and (39), that is, 

As a consequence, after some rearrangement, the transversality condition (44) yields 

the natural boundary conditions 

d F + G  - GF. - GG.]  + CF.1 = O  w f  u 1  U 

[ F ~ + G . ~ .  = o  
w1 

[ F . + G . ]  = O  u w f  

which, together with Eqs . (38) and (39), constitute the set of boundary conditions to be 

satisfied by the solutions of the Euler equations (43). 

Once a set of solutions satisfying the Euler equations and the boundary conditions 

is found, one has t o  verify that it yields a maximum for the functional (40). In this 

connection, the Weierstrass - condition is of considerable assistance. It states that 

the inequality 

AF + AG - F. AG - G . A~ 5 0 
U W 

must be satisfied at  every point of the maximal a r c .  In the above inequality, the 

symbols AF, AG, AG, and AG a r e  defined as 

(47) 
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where the unstarred quantities refer to  the extremal a r c  and the starred quantities 

to the comparison arc. Note that both the quantities evaluated for the extremal arc 

and those evaluated for the comparison arc must be consistent with the constraints 

(36). Since it is possible to change the shape of the upper contour while keeping the 

lower contour invariant, and - vice versa, the Weierstrass condition splits into 

separate conditions 

OF- F.OfiS0, AG- G . A G S O  
U W 

The first of these holds for the upper contour and the second for the lower contour. 

(49 1 
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5 .  Solution Process 

If the definition (41- 1) is combined with the Euler equations (43- 1) and (43-2) 

and the multiplier u is eliminated, we see that the upper contour includes the subarcs 

y l i - u = o  (50) 

and 

L' = A(y, u, G, h)/B(y, u, G, X )  

where 

Analogously, if Eq. (41-2) is combined with Eqs. (43-3) and (43-4) and the multiplier 

v is eliminated, we conclude that the lower contour includes the subarcs 

y \ ; - w = o  

and 

w = C(y,w,w, X)/D(y, w,G, X)  

(53) 

(54) 

where 



I 
I 
I 

I 

I 
I 
I 
i 

! 
I 

I 
I 

i 
I 

i 

I 

I 
I 

I 

i 
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5.1. Remark. It can be verified that Eqs. (51) and (54) admit solutions of the form --- 

y l i - u + c  = o ,  y + - w + c  = o  
1 2 

providing the integration constants are chosen to be 

C1 =2/3X , C = 2/37 2 

On account of Eq. (42), the multiplier 1 is positive and, hence, the constants C and 

C are positive. As a consequence, Eq. (56-1) is incompatible with Ineq. (35-l), 

while Eq. (56-2) is compatible with Ineq. (35-2). 

1 

2 

5.2. Extrema1 Arc. The next step is to examine how the previous subarcs _- 

must be combined s o  as to satisfy the appropriate boundary conditions as well as the 

Weierstrass condition. 

No clear-cut method exists for this part of the problem and a trial-and-error 

procedure must be employed. Laborious manipulations , omitted for the sake of 

brevity, show that (a) the upper contour is described by Eq. (50) and (b) the lower 

contour is described by Eq. (54), more specifically,by its particular solution (56-2). 

(57) 

Therefore, in differential form, the extrema1 arc is given by 

Upper contour y C - u = O  ----- 

Y \ ; - w = - c  C2 = 2/31 2 ’  Lower contour - 

Upon integration, Eqs. (58) lead to 

Upper contour 
I 

Lower contour 
--c_--- 

u = c y  3 

w = c4y + C 2  , C2 =2/3X 

(59) 
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where C and C are constants. 3 4 

In order to evaluate the constants, we invoke the prescribed boundary conditions 

(38) and (39) and the natural boundary conditions (46). In this connection, laborious 

manipulations yield the relationships 

AAR- 3 5 

which admit solutions of the form 

c 2 = C2@) 9 c3 = C3(U) , c4 = C4(U) 

Once the constants are known, the terminal coordinates of the upper and lower contours 

can be calculated with the relations 

y. = u. = 0 , w = C2(U) 

yf = aC2(u), Uf = Wf = C2(a)C 1 + uC4(u)1 

1 1  i 

Next, from (59-2), we see that the Lagrange multiplier is given by 

X = 2/3C2(u) 

Upon substituting Eqs . (59) into the expressions for the lift and the drag, integrating, 

and accounting for Eqs . (60-2) and (62), we see that the modified lift-to-drag ratio is 



given by 

19 

E, = 2/3C2(a) 

~~ 

AAR- 35 

Clearly, Eqs . (63) and (64) are compatible with Eq. (42). 
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6 .  Discussion and Conclusions --__ 

In the previous sections, the optimization of the lift-to-drag ratio of a slender, 

conical body flying at hypersonic speeds is presented under the assumptions that the 

pressure distribution is modified Newtonian and the surface-averaged friction coefficient 

is constant. The length of the body and the elongation ratio of the  cross  section are 

prescribed, and the values of the free-stream dynamic pressure,  the factor modifying 

the Newtonian pressure distribution, and the surface-averaged friction coefficient are 

known a priori. - The indirect methods of the calculus of variations are employed, and it 

is found that, for any given value of the length and the elongation ratio a, the optimum 

transversal contour is a diamond shape (Fig. 3) .  At every point of this diamond shape, the 

Weierstrass condition is satisfied. 

The results are summarized in Figs. 4 through 7, which present the functions 

As the elongation ratio increases, the modified thickness ratio wi decreases and the 

modified lift-to-drag ratio E, increases. For large elongation ratios (that is, winglike 

configurations), the following limiting values are approached: 

3 3 
lim w. = 42 = 1.26  , 
U- a- 

lim E, = 2/3 ./2 = 0.529 
1 

In closing, the following remarks are pertinent: 
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(a) For comparison purposes, several arbitrary cross  sections have been 

analyzed (Ref. 3): triangle, semiellipse, rectangle, trapezoid, bitrapezoid, triangle 

with a keel, caret shape, and inverted caret shape. The analysis shows that, for any ~ 

cross-sectional elongation ratio a, all of these shapes are aerodynamically inferior to 

the diamond shape, that is, they exhibit a lower lift-to-drag ratio. 

(b) Among the previous comparison shapes, the flat-bottom triangle is the best 
I 

1 
I 

and has a lift-to-drag ratio only slightly lower than that of the diamond shape. 

(c) The reason for the excellent performance of the flat-bottom triangle is that 

I its geometry closely approximates that of the diamond shape. The lower contour of 
I 

I 
I the diamond shape is rather flat, more specifically, its lateral inclination varies 

between 0 and 7 .3  degrees, depending on the elongation ratio a .  1 

t 
i 

1 
I 
1 

! 
(d) The wind-tunnel tests performed in Refs.  7 and 8 at M = 6.9 and M = 10 

have shown that the flat-bottom triangle is aerodynamically superior to  the semi- 

ellipse, the rectangle, and the trapezoid. The theoretical explanation of this result 

AAR- 35 

is that given in  point (c). 1 
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Fig. 1 Coordinate system. 
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Fig. 2 Base contour. 
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Fig. 3 Optimum transversal contour. 
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Fig. 4 Optimum value of y f '  

10 

7 a 4 

Fig. 5 Optimum thickness ratio. 
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Fig. 6 Optimum value of w, . 
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Fig. 7 Maximum lift-to-drag ratio. 


